
3. How?

Neural Fields as Appearance Model
Infer 3D Gaussian color 𝐜, opacity correction 𝒗
and deformation 𝛅 from code ω, position 𝜇, and 
direction 𝐝

Dynamic Composition
Compose retrieved information into scene at 
c, 𝑠, 𝑡 and render the image:

Scene Graph 𝒢 = (𝒱, ℰ)
Stores scene configurations

Nodes 𝒱: Latent codes ω
Sequence code ω!"
Object ID ω#

Edges ℰ: Rigid transformations
Ego-vehicle poses 𝐏
Dynamic object poses 𝜉
Camera to ego-vehicle 𝐓

3D Gaussians as Geometry Scaffold
Multiple sets of 3D Gaussians
• Static G$

World space
• Dynamic {G#∈ 𝑂%}

Canonical space

Remove SH-Coefficients 𝐜!& ∈ ℝ'(
à Reduced memory footprint 
• 𝑁 × 59 × 4 bytes = 2.25 GiB
• 𝑁 × 11 × 4 bytes = 0.42 GiB 
… for 10M Gaussians

4. And?
We can now model multiple complex traffic scenarios 
• Change scene appearance and geometry by exchanging latent code ω
• Model articulated motion: walking, holding a shopping bag, opening car door, …

1. What? 2. Why?
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𝑓! 𝐓,𝐊, 𝑡, 𝑠 →
ℐ ∈ 0,1 "×$×%

Inputs

Dynamic 
Composition

3D Gaussians

Geometry

Neural Fields

Appearance

Novel views in varying conditions

1. Gaussians as efficient geometry scaffold 
2. Neural fields as a compact and flexible appearance model
3. Scene dynamics via scene graph at global level and 

deformations at local level.
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3D Gaussian Splatting achieved high-quality 
novel view synthesis at high speed, but:

1. Limited scalability: Memory footprint 
increases linearly with number of primitives

2. Requires homogeneous input data:
Spherical harmonics cannot model large 
appearance changes

3. Limited to static scenes: 3D primitives have 
a fixed location

TL;DR Given a set of heterogeneous sequences of a shared geographic area, we optimize a single dynamic scene representation that renders arbitrary viewpoints and configurations at interactive speeds.
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We beat SOTA by over 3 dB while being over 200x faster! 

Key insights
Neural fields 
• Achieve comparable accuracy 

to spherical harmonics
• Scale better
• Are much more flexible
• Do not hurt speed critically

Opacity correction term 𝒗
• Essential for realistic rendering 

of heterogeneous captures 
(Geom. + App.)

Helpful tricks 
• Multi-GPU training & ADC
• Camera optimization
• Background modeling
• 4D Hash grids Qualitative example: Geom. + App. vs Appearance

Runtime Breakdown

Given: Set of sequences 𝑆 of a common 
geographic region of interest (RoI) with:
• Distinct dynamic objects
• Transient objects (construction sites, …)
• Varying environmental conditions

Each sequence 𝑠 ∈ 𝑆 has…
Ego-vehicle poses 𝐏
Camera calibration 𝐓,𝐊
Dynamic object poses 𝜉

Goal: Learn function 𝑓, that, for given viewpoint 𝐓,𝐊 at sequence s and time t, 
outputs the image ℐ ∈ 0,1 -×/×0 with correct appearance & dynamic actors
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