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TL;DR Given a set of heterogeneous sequences of a shared geographic area, we optimize a single dynamic scene representation that renders arbitrary viewpoints and Configurations at interactive speeds.

1. What?

Given: Set of sequences S of a common
geographic region of interest (Rol) with:
« Distinct dynamic objects

« Transient objects (construction sites, ...)
« Varying environmental conditions
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Each sequence s € S has..
Ego-vehicle poses P
Camera calibration T, K
Dynamic object poses ¢

Goal: Learn function fy that, for given viewpoint (T, K) at sequence s and time ¢
outputs the image 7 € [0,1]7*"*3 with correct appearance & dynamic actors

Novel V|ews In varylng Condltlons

2. Why?

3D Gaussian Splatting achieved high-quality
novel view synthesis at high speed, but:

1. Limited scalability: Memory footprint
increases linearly with number of primitives
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Requires homogeneous input data:
Spherical harmonics cannot model large
appearance changes

Limited to static scenes: 3D primitives have
a fixed location

4. And?

3. HOW7 Geometry
1. Gaussians as efficient geometry scaffold SN ~ynarmie Appearance
) _ % omposition
2. Neural fields as a compact and flexible appearance model I 3. \ “’ﬂﬂﬂ"' °
3. Scene dynamics via scene graph at global level and \ Neural Fields ‘

' 3D Gaussi
deformations at local level. aussians

Scene Graph G = (V, &) Neural Fields as Appearance Model

We can now model multiple complex traffic scenarios

Change scene appearance and geometry by exchanging latent code w
Model articulated motion: walking, holding a shopping bag, opening car door, ...

Stores scene configurations (c,s,t) Infer 3D Gau§3|an color ¢, opacity qu_rectlon v
l and deformation 8 from code w, position u, and
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: Dvnamic Combposition 7 * Are much more erXIb.I(_e We beat SOTA by over 3 dB while belng over 200x faster!
3D Gaussians as Geometry Scaffold y P * Do not hurt speed critically

Compose retrieved information into scene at
(c,s,t) and render the image:

Multiple sets of 3D Gaussians . ~
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Remove SH-Coefficients ¢y, € R*8
- Reduced memory footprint
« N X59 x4 bytes =2.25 GiB
« NX11x4 bytes =0.42 GiB
. for 10M Gaussians

Opacity correction term v

Helpful tricks

Single-Sequence Ablation Multi-sequence Ablation
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Essential for realistic rendering
of heterogeneous captures
(Geom. + App.)
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Multi-GPU training & ADC
Camera optimization
Background modeling

4D Hash grids

Qualitative example: Geom. + App. vs Appearance



